Positively curved $4$-manifolds and the nonnegativity of isotropic curvatures.
نویسندگان
چکیده
منابع مشابه
Positively Curved Combinatorial 3-Manifolds
We present two theorems in the “discrete differential geometry” of positively curved spaces. The first is a combinatorial analog of the Bonnet-Myers theorem: • A combinatorial 3-manifold whose edges have degree at most five has edgediameter at most five. When all edges have unit length, this degree bound is equivalent to an angle-deficit along each edge. It is for this reason we call such space...
متن کاملOn positively curved 4-manifolds with S-symmetry
It is well-known by the work of Hsiang and Kleiner that every closed oriented positively curved 4-dimensional manifold with an effective isometric S-action is homeomorphic to S or CP. As stated, it is a topological classification. The primary goal of this paper is to show that it is indeed a diffeomorphism classification for such 4dimensional manifolds. The proof of this diffeomorphism classifi...
متن کاملPositively Curved Manifolds with Large Spherical Rank
Rigidity results are obtained for Riemannian d-manifolds with sec > 1 and spherical rank at least d − 2 > 0. Conjecturally, all such manifolds are locally isometric to a round sphere or complex projective space with the (symmetric) Fubini– Study metric. This conjecture is verified in all odd dimensions, for metrics on dspheres when d 6= 6, for Riemannian manifolds satisfying the Rakić duality p...
متن کاملPositively Curved Manifolds with Large Conjugate Radius
Let M denote a complete simply connected Riemannian manifold with all sectional curvatures ≥ 1. The purpose of this paper is to prove that when M has conjugate radius at least π/2, its injectivity radius and conjugate radius coincide. Metric characterizations of compact rank one symmetric spaces are given as applications.
متن کاملVolume Growth and Curvature Decay of Positively Curved Kähler Manifolds
In this paper we obtain three results concerning the geometry of complete noncompact positively curved Kähler manifolds at infinity. The first one states that the order of volume growth of a complete noncompact Kähler manifold with positive bisectional curvature is at least half of the real dimension (i.e., the complex dimension). The second one states that the curvature of a complete noncompac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Michigan Mathematical Journal
سال: 1997
ISSN: 0026-2285
DOI: 10.1307/mmj/1029005700